Skip to contents

All functions

asap_bbknn()
Reconcile multi-batch matrices by batch-balancing KNN
asap_build_interacting_columns()
Identify pairs of columns interacting with one another
asap_build_interaction_columns_mtx()
Identify pairs of columns interacting with one another
asap_fit_pmf()
A quick PMF estimation based on alternating Poisson regressions
asap_fit_pmf_cbind()
A quick PMF estimation based on alternating Poisson regressions while sharing a dictionary/factors matrix
asap_fit_pmf_delta()
A quick PMF estimation based on alternating Poisson regressions across multiple matrices with the same dimensionality
asap_fit_pmf_larch()
A quick PMF estimation based on alternating Poisson regressions with tree-structured priors
asap_fit_pmf_rbind()
A quick PMF estimation based on alternating Poisson regressions while sharing a factor loading/topic proportion matrix while concatenating the rows of data matrices
asap_pmf_regression()
PMF regression
asap_pmf_regression_cbind_mtx()
PMF statistics to estimate factor loading
asap_pmf_regression_mtx()
PMF regression
asap_pmf_stat_interacting_columns_mtx()
Topic statistics to estimate factor loading
asap_pmf_stat_rbind()
Topic statistics to estimate factor loading
asap_random_bulk_cbind()
Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
asap_random_bulk_cbind_mtx()
Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
asap_random_bulk_interacting_columns()
Generate approximate pseudo-bulk interaction data by random projections
asap_random_bulk_linking_mtx()
Generate approximate pseudo-bulk data by random projections while linking features across multiple mtx files
asap_random_bulk_mtx()
Generate approximate pseudo-bulk data by random projections
asap_random_bulk_rbind_mtx()
Generate approximate pseudo-bulk data by random projections while sharing columns/cells across multiple data sets. Vertical concatenation.
asap_stretch_nn_matrix_columns()
Stretch non-negative matrix
asap_topic_pmf()
Calibrate topic proportions based on sufficient statistics
asap_topic_pmf_rbind()
Calibrate topic proportions based on sufficient statistics
collapse_network()
Collapse N x N adjacency network into S x S
decompose_network()
Assign best topic membership for the edges
fileset.list()
Create a list of MTX-related files
fit_poisson_cluster_rows()
Clustering the rows of a count data matrix
mmutil_build_index()
Create an index file for a given MTX
mmutil_check_index()
Check if the index tab is valid
mmutil_colnames()
Just read each col name per line
mmutil_copy_selected_columns()
Take a subset of columns and create a new MTX file-set
mmutil_copy_selected_rows()
Take a subset of rows and create a new MTX file-set
mmutil_info()
Just read the header information
mmutil_read_columns()
Read a subset of columns from the data matrix
mmutil_read_columns_sparse()
Read a subset of columns from the data matrix
mmutil_read_index()
Read an index file to R
mmutil_read_rows_columns()
Read a subset of rows and columns from the data matrix
mmutil_rownames()
Just read each row name per line
mmutil_simulate_poisson()
Simulation Poisson data based on Mu
mmutil_simulate_poisson_mixture()
Simulate sparse counting data with a mixture of Poisson parameters
mmutil_write_mtx()
Write down sparse matrix to the disk
pmf2topic()
Convert Poisson Matrix Factorization to Multinomial Topic model. The same idea was first coined by fastTopics paper.
project.proportions()
Create 2D projection of topic proportions
rbind(<mtx>)
A wrapper function that concatenates two files vertically
read.mtx.dense()
A wrapper function to read a dense submatrix
read.mtx.sparse()
A wrapper function to read a sparse submatrix
read.vec()
Read a vector of string names
write.sparse()
Write matrix market file set