Package index
-
asap_bbknn()
- Reconcile multi-batch matrices by batch-balancing KNN
-
asap_build_interacting_columns()
- Identify pairs of columns interacting with one another
-
asap_build_interaction_columns_mtx()
- Identify pairs of columns interacting with one another
-
asap_fit_pmf()
- A quick PMF estimation based on alternating Poisson regressions
-
asap_fit_pmf_cbind()
- A quick PMF estimation based on alternating Poisson regressions while sharing a dictionary/factors matrix
-
asap_fit_pmf_delta()
- A quick PMF estimation based on alternating Poisson regressions across multiple matrices with the same dimensionality
-
asap_fit_pmf_larch()
- A quick PMF estimation based on alternating Poisson regressions with tree-structured priors
-
asap_fit_pmf_rbind()
- A quick PMF estimation based on alternating Poisson regressions while sharing a factor loading/topic proportion matrix while concatenating the rows of data matrices
-
asap_pmf_regression()
- PMF regression
-
asap_pmf_regression_cbind_mtx()
- PMF statistics to estimate factor loading
-
asap_pmf_regression_mtx()
- PMF regression
-
asap_pmf_stat_interacting_columns_mtx()
- Topic statistics to estimate factor loading
-
asap_pmf_stat_rbind()
- Topic statistics to estimate factor loading
-
asap_random_bulk_cbind()
- Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
-
asap_random_bulk_cbind_mtx()
- Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
-
asap_random_bulk_interacting_columns()
- Generate approximate pseudo-bulk interaction data by random projections
-
asap_random_bulk_linking_mtx()
- Generate approximate pseudo-bulk data by random projections while linking features across multiple mtx files
-
asap_random_bulk_mtx()
- Generate approximate pseudo-bulk data by random projections
-
asap_random_bulk_rbind_mtx()
- Generate approximate pseudo-bulk data by random projections while sharing columns/cells across multiple data sets. Vertical concatenation.
-
asap_stretch_nn_matrix_columns()
- Stretch non-negative matrix
-
asap_topic_pmf()
- Calibrate topic proportions based on sufficient statistics
-
asap_topic_pmf_rbind()
- Calibrate topic proportions based on sufficient statistics
-
collapse_network()
- Collapse N x N adjacency network into S x S
-
decompose_network()
- Assign best topic membership for the edges
-
fileset.list()
- Create a list of MTX-related files
-
fit_poisson_cluster_rows()
- Clustering the rows of a count data matrix
-
mmutil_build_index()
- Create an index file for a given MTX
-
mmutil_check_index()
- Check if the index tab is valid
-
mmutil_colnames()
- Just read each col name per line
-
mmutil_copy_selected_columns()
- Take a subset of columns and create a new MTX file-set
-
mmutil_copy_selected_rows()
- Take a subset of rows and create a new MTX file-set
-
mmutil_info()
- Just read the header information
-
mmutil_read_columns()
- Read a subset of columns from the data matrix
-
mmutil_read_columns_sparse()
- Read a subset of columns from the data matrix
-
mmutil_read_index()
- Read an index file to R
-
mmutil_read_rows_columns()
- Read a subset of rows and columns from the data matrix
-
mmutil_rownames()
- Just read each row name per line
-
mmutil_simulate_poisson()
- Simulation Poisson data based on Mu
-
mmutil_simulate_poisson_mixture()
- Simulate sparse counting data with a mixture of Poisson parameters
-
mmutil_write_mtx()
- Write down sparse matrix to the disk
-
pmf2topic()
- Convert Poisson Matrix Factorization to Multinomial Topic model. The same idea was first coined by
fastTopics
paper.
-
project.proportions()
- Create 2D projection of topic proportions
-
rbind(<mtx>)
- A wrapper function that concatenates two files vertically
-
read.mtx.dense()
- A wrapper function to read a dense submatrix
-
read.mtx.sparse()
- A wrapper function to read a sparse submatrix
-
read.vec()
- Read a vector of string names
-
write.sparse()
- Write matrix market file set