Package index
-
asap_bbknn() - Reconcile multi-batch matrices by batch-balancing KNN
-
asap_build_interacting_columns() - Identify pairs of columns interacting with one another
-
asap_build_interaction_columns_mtx() - Identify pairs of columns interacting with one another
-
asap_fit_pmf() - A quick PMF estimation based on alternating Poisson regressions
-
asap_fit_pmf_cbind() - A quick PMF estimation based on alternating Poisson regressions while sharing a dictionary/factors matrix
-
asap_fit_pmf_delta() - A quick PMF estimation based on alternating Poisson regressions across multiple matrices with the same dimensionality
-
asap_fit_pmf_larch() - A quick PMF estimation based on alternating Poisson regressions with tree-structured priors
-
asap_fit_pmf_rbind() - A quick PMF estimation based on alternating Poisson regressions while sharing a factor loading/topic proportion matrix while concatenating the rows of data matrices
-
asap_pmf_regression() - PMF regression
-
asap_pmf_regression_cbind_mtx() - PMF statistics to estimate factor loading
-
asap_pmf_regression_mtx() - PMF regression
-
asap_pmf_stat_interacting_columns_mtx() - Topic statistics to estimate factor loading
-
asap_pmf_stat_rbind() - Topic statistics to estimate factor loading
-
asap_random_bulk_cbind() - Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
-
asap_random_bulk_cbind_mtx() - Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
-
asap_random_bulk_interacting_columns() - Generate approximate pseudo-bulk interaction data by random projections
-
asap_random_bulk_linking_mtx() - Generate approximate pseudo-bulk data by random projections while linking features across multiple mtx files
-
asap_random_bulk_mtx() - Generate approximate pseudo-bulk data by random projections
-
asap_random_bulk_rbind_mtx() - Generate approximate pseudo-bulk data by random projections while sharing columns/cells across multiple data sets. Vertical concatenation.
-
asap_stretch_nn_matrix_columns() - Stretch non-negative matrix
-
asap_topic_pmf() - Calibrate topic proportions based on sufficient statistics
-
asap_topic_pmf_rbind() - Calibrate topic proportions based on sufficient statistics
-
collapse_network() - Collapse N x N adjacency network into S x S
-
decompose_network() - Assign best topic membership for the edges
-
fileset.list() - Create a list of MTX-related files
-
fit_poisson_cluster_rows() - Clustering the rows of a count data matrix
-
mmutil_build_index() - Create an index file for a given MTX
-
mmutil_check_index() - Check if the index tab is valid
-
mmutil_colnames() - Just read each col name per line
-
mmutil_copy_selected_columns() - Take a subset of columns and create a new MTX file-set
-
mmutil_copy_selected_rows() - Take a subset of rows and create a new MTX file-set
-
mmutil_info() - Just read the header information
-
mmutil_read_columns() - Read a subset of columns from the data matrix
-
mmutil_read_columns_sparse() - Read a subset of columns from the data matrix
-
mmutil_read_index() - Read an index file to R
-
mmutil_read_rows_columns() - Read a subset of rows and columns from the data matrix
-
mmutil_rownames() - Just read each row name per line
-
mmutil_simulate_poisson() - Simulation Poisson data based on Mu
-
mmutil_simulate_poisson_mixture() - Simulate sparse counting data with a mixture of Poisson parameters
-
mmutil_write_mtx() - Write down sparse matrix to the disk
-
pmf2topic() - Convert Poisson Matrix Factorization to Multinomial Topic model. The same idea was first coined by
fastTopicspaper.
-
project.proportions() - Create 2D projection of topic proportions
-
rbind(<mtx>) - A wrapper function that concatenates two files vertically
-
read.mtx.dense() - A wrapper function to read a dense submatrix
-
read.mtx.sparse() - A wrapper function to read a sparse submatrix
-
read.vec() - Read a vector of string names
-
write.sparse() - Write matrix market file set