A quick PMF estimation based on alternating Poisson regressions while sharing a factor loading/topic proportion matrix while concatenating the rows of data matrices
asap_fit_pmf_rbind.Rd
Each Y(t) ~ beta(t) * theta
Usage
asap_fit_pmf_rbind(
y_dn_vec,
maxK,
max_iter = 100L,
verbose = TRUE,
a0 = 1,
b0 = 1,
do_log1p = FALSE,
rseed = 1337L,
EPS = 1e-08,
jitter = 1,
NUM_THREADS = 0L
)
Arguments
- y_dn_vec
a list of non-negative data matrices (gene x sample)
- maxK
maximum number of factors
- max_iter
max number of optimization steps
- verbose
verbosity
- a0
gamma(a0, b0) default: a0 = 1
- b0
gamma(a0, b0) default: b0 = 1
- do_log1p
do log(1+y) transformation
- rseed
random seed (default: 1337)
- EPS
(default: 1e-8)
- jitter
(default: 1)
- min_iter
min number of optimization steps
Value
a list that contains:
log.likelihood log-likelihood trace
theta loading (sample x factor)
log.theta log-loading (sample x factor)
log.theta.sd sd(log-loading) (sample x factor)
beta a list of dictionary matrices (gene x factor)
log.beta a list of log dictionary (gene x factor)
log.beta.sd a list of standard deviations (gene x factor)