Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
asap_random_bulk_cbind_mtx.Rd
Generate approximate pseudo-bulk data by random projections while sharing rows/features across multiple data sets. Horizontal concatenation.
Usage
asap_random_bulk_cbind_mtx(
mtx_files,
row_files,
col_files,
idx_files,
num_factors,
r_batch_names = NULL,
rows_restrict = NULL,
rename_columns = TRUE,
take_union_rows = FALSE,
rseed = 42L,
verbose = TRUE,
NUM_THREADS = 0L,
CELL_NORM = 10000,
BLOCK_SIZE = 1000L,
do_batch_adj = TRUE,
do_log1p = FALSE,
do_down_sample = TRUE,
save_aux_data = FALSE,
KNN_CELL = 10L,
CELL_PER_SAMPLE = 100L,
BATCH_ADJ_ITER = 100L,
a0 = 1,
b0 = 1,
MAX_ROW_WORD = 2L,
ROW_WORD_SEP = "_",
MAX_COL_WORD = 100L,
COL_WORD_SEP = "@"
)
Arguments
- mtx_files
matrix-market-formatted data files (bgzip)
- row_files
row names (gene/feature names)
- col_files
column names (cell/column names)
- idx_files
matrix-market colum index files
- num_factors
a desired number of random factors
- take_union_rows
take union of rows (default: FALSE)
- rseed
random seed
- verbose
verbosity
- NUM_THREADS
number of threads in data reading
- CELL_NORM
normalization constant per each data point
- BLOCK_SIZE
disk I/O block size (number of columns)
- do_batch_adj
(default: FALSE)
- do_log1p
log(x + 1) transformation (default: FALSE)
- do_down_sample
down-sampling (default: TRUE)
- save_aux_data
save random projection (default: FALSE)
- KNN_CELL
k-NN cells per batch between different batches (default: 10)
- CELL_PER_SAMPLE
down-sampling cell per sample (default: 100)
- BATCH_ADJ_ITER
batch Adjustment steps (default: 100)
- a0
gamma(a0, b0) (default: 1e-8)
- b0
gamma(a0, b0) (default: 1)
- MAX_ROW_WORD
maximum words per line in
row_files[i]
- ROW_WORD_SEP
word separation character to replace white space
- MAX_COL_WORD
maximum words per line in
col_files[i]
- COL_WORD_SEP
word separation character to replace white space
Value
a list
PB
pseudobulk (average) data (feature x sample)sum
pseudobulk (sum) data (feature x sample)matched.sum
kNN-matched pseudobulk data (feature x sample)sum_db
batch-specific sum (feature x batch)size
size per sample (sample x 1)prob_bs
batch-specific frequency (batch x sample)size_bs
batch-specific size (batch x sample)batch.effect
batch effect (feature x batch)log.batch.effect
log batch effect (feature x batch)batch.names
batch names (batch x 1)positions
pseudobulk sample positions (cell x 1)rand.dict
random dictionary (proj factor x feature)rand.proj
random projection results (sample x proj factor)colnames
column (cell) namesrownames
feature (gene) names