Generate approximate pseudo-bulk data by random projections
asap_random_bulk_mtx.RdGenerate approximate pseudo-bulk data by random projections
Usage
asap_random_bulk_mtx(
  mtx_file,
  row_file,
  col_file,
  idx_file,
  num_factors,
  r_covar_n = NULL,
  r_covar_d = NULL,
  rows_restrict = NULL,
  rseed = 42L,
  verbose = FALSE,
  NUM_THREADS = 0L,
  CELL_NORM = 10000,
  BLOCK_SIZE = 1000L,
  do_log1p = FALSE,
  do_down_sample = FALSE,
  save_aux_data = FALSE,
  weighted_rand_proj = FALSE,
  CELL_PER_SAMPLE = 100L,
  a0 = 1e-08,
  b0 = 1,
  MAX_ROW_WORD = 2L,
  ROW_WORD_SEP = "_",
  MAX_COL_WORD = 100L,
  COL_WORD_SEP = "@"
)Arguments
- mtx_file
- matrix-market-formatted data file (bgzip) 
- row_file
- row names (gene/feature names) 
- col_file
- column names (cell/column names) 
- idx_file
- matrix-market colum index file 
- num_factors
- a desired number of random factors 
- r_covar_n
- N x r covariates (default: NULL) 
- r_covar_d
- D x r covariates (default: NULL) 
- rseed
- random seed 
- verbose
- verbosity 
- NUM_THREADS
- number of threads in data reading 
- CELL_NORM
- sample normalization constant (default: 1e4) 
- BLOCK_SIZE
- disk I/O block size (number of columns) 
- do_log1p
- log(x + 1) transformation (default: FALSE) 
- do_down_sample
- down-sampling (default: FALSE) 
- save_aux_data
- save auxiliary data (default: FALSE) 
- weighted_rand_proj
- save random projection (default: FALSE) 
- CELL_PER_SAMPLE
- down-sampling cell per sample (default: 100) 
- a0
- gamma(a0, b0) (default: 1e-8) 
- b0
- gamma(a0, b0) (default: 1) 
- MAX_ROW_WORD
- maximum words per line in - row_file
- ROW_WORD_SEP
- word separation character to replace white space 
- MAX_COL_WORD
- maximum words per line in - col_file
- COL_WORD_SEP
- word separation character to replace white space 
Value
a list
- PBpseudobulk (average) data (feature x sample)
- sumpseudobulk (sum) data (feature x sample)
- sizesize per sample (sample x 1)
- positionspseudobulk sample positions (cell x 1)
- rand.dictrandom dictionary (proj factor x feature)
- rand.projrandom projection results (sample x proj factor)
- colnamescolumn (cell) names
- rownamesfeature (gene) names