A quick PMF estimation based on alternating Poisson regressions
asap_fit_pmf.Rd
A quick PMF estimation based on alternating Poisson regressions
Usage
asap_fit_pmf(
Y_,
maxK,
max_iter = 100L,
verbose = TRUE,
a0 = 1,
b0 = 1,
do_log1p = FALSE,
rseed = 1337L,
svd_init = FALSE,
do_degree_correction = FALSE,
normalize_cols = FALSE,
EPS = 1e-08,
jitter = 1,
NUM_THREADS = 0L
)
Arguments
- Y_
non-negative data matrix (gene x sample)
- maxK
maximum number of factors
- max_iter
max number of optimization steps
- verbose
verbosity
- a0
gamma(a0, b0) default: a0 = 1
- b0
gamma(a0, b0) default: b0 = 1
- do_log1p
do log(1+y) transformation
- rseed
random seed (default: 1337)
- svd_init
initialize by SVD (default: FALSE)
- normalize_cols
normalize columns by col_norm (default: FALSE)
- EPS
(default: 1e-8)
- jitter
(default: 0.1)
- min_iter
min number of optimization steps
Value
a list that contains:
log.likelihood log-likelihood trace
theta loading (sample x factor)
log.theta log-loading (sample x factor)
log.theta.sd sd(log-loading) (sample x factor)
beta dictionary (gene x factor)
log.beta log dictionary (gene x factor)
log.beta.sd sd(log-dictionary) (gene x factor)