rcpp_mmutil_match_files.Rd
Match the columns of two MTX files
rcpp_mmutil_match_files(
src_mtx,
tgt_mtx,
knn,
RANK,
TAKE_LN = TRUE,
TAU = 1,
COL_NORM = 10000,
EM_ITER = 10L,
EM_TOL = 1e-04,
LU_ITER = 5L,
KNN_BILINK = 10L,
KNN_NNLIST = 10L,
row_weight_file = "",
NUM_THREADS = 1L,
BLOCK_SIZE = 10000L
)
source data file
target data file
k-nearest neighbour
SVD rank
take log(1 + x) trans or not
regularization parameter (default = 1)
column normalization (default: 1e4)
EM iteration for factorization (default: 10)
EM convergence (default: 1e-4)
LU iteration (default: 5)
num. of bidirectional links (default: 10)
num. of nearest neighbor lists (default: 10)
row-wise weight file
number of threads for multi-core processing
number of columns per block
a list of source, target, distance
## Generate some data
rr <- rgamma(100, 1, 6) # 100 cells
mm <- matrix(rgamma(100 * 3, 1, 1), 100, 3)
dat <- mmutilR::rcpp_mmutil_simulate_poisson(mm, rr, "sim_test")
.matched <- mmutilR::rcpp_mmutil_match_files(dat$mtx, dat$mtx,
knn=1, RANK=5)
## Do they match well?
mean(.matched$src.index == .matched$tgt.index)
#> [1] 0.9791667
summary(.matched$dist)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 3.460e-06 1.263e-04 5.302e-04 3.467e-03 1.750e-03 1.738e-01
## clean up temp directory
unlink(list.files(pattern = "sim_test"))