make.sc.eqtl.data.Rd
We will generate Y ~ Poisson(mu * rho) where mu ~ exp(log.mu/smudge), rho ~ Gamma(a,b)
make.sc.eqtl.data(
file.header,
X,
h2,
n.causal.snps = 1,
n.causal.genes = 5,
pve.y.by.u0 = 0.3,
n.u0 = 3,
pve.u1.by.x = 0.8,
pve.y.by.u1 = 0.3,
n.u1 = 3,
pve.interaction = 0.5,
n.interaction = 0,
n.genes = 50,
n.covar.genes = n.genes,
num.mixtures = 1,
smudge = 1,
rho.a = 2,
rho.b = 2,
ncell.ind = 10,
rseed = 13
)
genotype matrix (individual x SNPs)
heritability (proportion of variance of Y explained by genetic X)
X variables directly affecting on Y
Y variables directly regulated by X
proportion of variance of Y explained by U0
number of covariates on Y
proportion of variance of U1 explained by X
proportion of variance of Y explained by U1
number of covariates on Y
proportion of variance of Y explained by interaction
number of genes interacting with the causal genes
total number of genes (Y variables)
num of cell mixtures
a scaling factor for a GLM model (default: 1)
rho ~ gamma(a, b)
rho ~ gamma(a, b)
number of cells per individual
random seed
simulation results
The simulation result list will have two lists:
data
:
data$mtx
: a matrix market data file
data$row
: a file with row names
data$col
: a file with column names
data$idx
: an indexing file for the columns
data$indv
: a mapping file between column and individual names
indv
:
indv$y
: observed (noisy) individual x gene matrix
indv$x
: observed individual x variants genotype matrix
indv$causal.snps
: causal variants (X variables)
indv$causal.genes
: causal genes (Y variables)
indv$causal.label
: true labels