make.pine.Rd
Counterfactual confounder adjustment by by Pairwise INdividual Effect matching
make.pine(
mtx.data,
celltype,
cell2indv,
V = NULL,
knn.cell = 50,
knn.indv = 1,
celltype.mat = NULL,
.rank = 10,
.take.ln = TRUE,
.pca.reg = 1,
.col.norm = 10000,
.em.iter = 0,
.em.tol = 1e-04,
num.threads = 1,
impute.by.knn = FALSE,
remove.dup = TRUE,
...
)
fileset.header ($mtx, $row, $col, $idx)
celltype/cluster assignments (cells x 2 mapping, cells x 1, or just a single string)
cell-level individual assignments (cells x 2), cell -> indv
celltype/cluster assignment matrix (cells x cell types)
SVD rank for spectral matching
take log(1 + x) trans or not
regularization parameter (default = 1)
column normalization for SVD
EM iteration for factorization (default: 0)
EM convergence (default: 1e-4)
number of threads for multi-core processing
imputation by kNN weighting (default: FALSE)
remove duplicated pairs (default: TRUE)
small number (default: 1e-8)
number of neighbours k
in kNN for matching
hyperparameter for gamma(a0, b0) (default: 1)
hyperparameter for gamma(a0, b0) (default: 1)
a list of sufficient statistics matrices